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RADAR BIAS ERROR REMOVAL ALGORITHM
FOR A MULTIPLE-SITE SYSTEM

1.0 INTRODUCTION

Recent investigations as to the feasibility of operating a multiple platform sensor integration sys-
tem [1-3] have led to the problem of removing bias errors from transmitted data. Bias errors afe those
errors, inherent to each sensor system, which may have been introduced during the constfuction or
alignment of the sensor or are present as a result of equipment failures. With three-dimensional radar
systems the problem reduces to one of detecting the bias errors that may be present in the range
azimuth and elevation measurements made by each of the radars within the network of part1c1pat1ng
platforms. The solution of this problem is fundamental to the successful operation of a multiplé plat:
form sensor integration network. If bias errors cannot be detected and their effect reduced to a toler-
able level, the advantages to be gained from the exchange of information between platforms cannot be
realized. As a first step in this direction an algorithm has been developed for the special case of two
fixed radars with known locations. The algorithm has been tested with simulated data and with real
measurements. The measurements were made on targets of opportunity by two radars located at NRL’s
Chesapeake Bay Detachment (CBD) and at the Applied Physics Laboratory (APL) of the Johns Hop-
kins University. The results are presented in Sec. 3.0 and 4.0. With minor adjustments to the algo-
rithm, the same basic concept should be applicable to the moving platform case.

2.0 ALGORITHM DEVELOPMENT

The problem which was taken under consideration is described as follows: Given the time history
of measurements (range, azimuth, and elevation) on several distributed targets as measured by two
separate radars, determine the measuremem biases for each radar under the assumption that the exact
location (latitude, longitude, and élevatic -* of each radar on International Geoid is known.

A two-dimensional representation of the geometry af the problem is shown in Fig. 1. Coordinate
systems are established at each site with the x-axis ‘r\;mtmg due east, the y-axis pomtmg to true north,
and the z-axis (not shown) pointing outward along a liné joining the site and the Earlh’s cevuter.
Azimuth is measured clockwise from the y-axis, elevation from the horizontal plane comammg the x
and y axes, and range is the Euclidian distance between the site and the target. The range, ammath
and elevation measurements can readily be transformed to the local rectangular. coordinate- systenis at
each site. This allows us to express the measured position vector of a target-with respect to, Site 1. as

X1=X1+A131+A1N1, (1)
where
X X A, N
Xi=Inl Xi=n| Bi=|Aal, Ni=[Na|
7] % A, Ny

Manuscript submitted December 30, 1980.
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TARGET 8

Fig. 1 — Geometric representation of the problem

6x1/6r1 aXI/aal 6x1/6m
Ay=|n/dry dy/8a; By/amy|,
0z1/0r; 0z)/0a; dz/0m

r = range, a = azimuth
and 7 = elevation

with X, being the position vector of the target at some instant, X | being the mean or trie position at
the same time, B, being the vector of bias errors, N) being zero mean noise on the measurements, and
A, being a matrix of partial derivatives which are derived in the appendix. Equation (1) is in effect.a
truncated Taylor’s series expanded about the target’s true position. The measurements made at Site 2
can also be converted to the local rectangular coordinate system at Site 2 and transformed to the local
rectangular coordinate system at Site 1. This enables us to express the position vector of the target. as
measured by Site 2 with respect to Site 1 as

Xy= X, + A,By + A;N,, i

Ixy/0ry Oxy/80; 0x5/07;
where Az = 6y,/6r2 GyJBaz Gy;/am ,
9z)/0r, 0zyf0a; 02/07;

i.e., A, is the matrix of partial derivatives representing the rate of change-of Site 1 rectangular coordi-
nates due to changes in the measurements made at Site 2, B; is thé vector of bias errors-at Site 2, and
N, is the vector with elements that represent the noise on the elements made at Site 2. If the measures
ments at Sites 1 and 2 are not made at the same instant, it is possible to predict a "meascred” position
at some common time and still have Eqs. (1) and (2) hold provided the partial defivatives aré not
changing significantly. When Eqs. (1) and (2) represent coincident measurements, X, = P = Xz and it is
possible to subtract Eq. (2) from Eq. (1) to yield

AX = A\B; — A3B; + AN, — A3N,, [€)]

where |AX| represents the ESuclidean distance between the two measuréments. Equation (3) can also
be expressed in the form
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AX=M-B+ N,
By N,
where M=[A,,—A2, B=j-|, and N= M- }---|.
B, N,

@

Equation (4) is now in the form of the observation equation for linear estimation. In this case the AX -
vector represents the measurements and the B vector of bias errors is the state vector. The state equa-

tion is given by
B(t+1)=1-B(@).

)

Note that the state transition matrix is the identity matiix since the bias errors aré assumed to e con-
stant over the period of interest; i.c., the bias errors at some future state (z + 1) are equal to the bias

errors at the current state (7).

With this formulation (Eqs. (4) and (5)) it is possible to predict the bias errors using the Kalman
filter algorithm. (See Ref. 4 for a typical application.) The six steps involved in the recursive algorithm-

are as follows:

Step 1. Calculate one-step prediction,
BGle=1)=B@—1lr-1),

©)

where the circumflex signifies an estimate, B (1lz — 1) indicates the predicted bias, and B - llt =1)

indicates the smoothed bias of B(t).

Step 2. Calculate the predicted covariance matrix P(tflt — 1) from the smoathed covariance

Pit—1lr— 1 by
Plr— 1) =P —1t—1).

¥)]

(Note that for this case the predicted covariance matrix and state vectors are assigned the values deter- -

mined at the previous time step since the state transition matrix is the identity matrix.)

Step 3. Caiculate the predicted observation AX 7z — 1) by
AX (e — 1) = M(1) Btz — 17,

where M (1} is the measurement matrix M at the 1th sample.

Step 4. Calculate the filter gain w{f) using
w(e) = P(af = DM () IM@OPr — DM + RO,

where the tilde indicates the transpose of a matrix and R (1) is the covariance matrix of the noise.

Step 5. Calculate a new smoothed estimate
By = Bt — 1) + w(®-AX () — AX {0t - D,
where AX (1) is the measurement vector AX in Eq. 4 at the rth sampleé.

Step 6. Calculate a new covariance matrix . -

Pil) = — w() - M) Pz = 1).

The measurement covariance matrix R is the éovarianceA of N i.e., Tl =
R=cov(N)=E {(Al - N; - AL' NQ) (A] : N] - A'p&lz)r}.

(8)

)

(10)

an-

d2):
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Under the assumption that the partial derivatives are changing slowly in the neighborhood of the target
location. a good approximation of the covariance is

cov (V) = A\ (N\ND AT + 4,(N;ND AT (13)

or alterunatively

cov(N)=M (N-NT) M". (14)

It should be noted that in calculating the partial derivatives which are the elements of the M matrix,
that the smoothed estimate of the bias errors is applied to the measured range, azimuth, and elevation
to provide an evaluation closer to the true position of the target. The matrix (N - N7) is a diagonalized

matrix with the diagonal elements being equal to the variances in the mecasurements of each radar.
These were assigned typical values for the radars that were used.

3.0 RESULTS WITH SIMULATED DATA

To check out the algorithm described in Sec. 2.0, a set of simulated tracking data was developed.
Stationary targets were chosen to simplify the process. When moving targets are bzing tracked further
complications arise. Since the measurements at both sites are not made simultaneously a prediction of
one of the measured positions, to some common time, must be made. This prediction process is not
required for stationary targets since the predicted position is the current position.

Six stationary points in space, surrounding the locations of the two sites (WRL’s Chesapeake Bay
Detachment and APL) were selected as targets. The locations of the targets and their respective lati-

tudes and longitudes are shown in Fig. 2. All of the target points were assumed to be at an altitude of
10,000 m.

N
)
TARGET 1
LAT. 39.5°
LOMG -76.9°
SITE 1 (APL) =« TARGET 2
LAT. 39.16° LAT. 39.0°
LONG. -76.90°¢ LONG.-76.3°
SITE 2 {NRL/CB8D)
LAT. 38.686°
TARGET 6 LONG. -76.53°
LAT. 39.0°
LONG, -77.2° TARGET 3
LAT. 38.5°
#- LONG. - 76.3°
TARGET & —— TARGET 4
g LA4T. 38.5° LAT. 38.2°
LONG. -76.9° = LONG. -76.5°

Fig. 2 — Location of simulated targets
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Measurement data were generated by selecting samples from a Gaussian distribution derived frc
a random number generator and by adding these samples to respective range, azimuth, and elevati
coordinates at each site. Bias errors that would adequately test the algorithm were also added to 1
measurements at this point. This resulted in a set of simulated measurements (range, azimuth, 2
elevation) for each of the six targets as measured by both sites. The difference in the location of e:
target as measuved by both sites was used as the input to the Kalman filter. The process of simulatin,
detoction of all the targets by each site was repeated 50 times or equivalently 50 rotations of each rad:

The computer-generated bias errors as predicted by the algoritim are presented graphically
Figs. 3 and 4. They show the estimated bias error as a function of time; the time units being 1
number of scans completed by both radars from the initial time until the time at which the estimate
made. Several cases with a wide range of induced bias errors were simulated. The case which is ill
trated in Figs. 3 and 4 had the following induced errors at the APL site:

range bias error = 2 n.mi
azimuth bias error = —3°
elevation bias error = 3°;
and at the NRL site:
range bias error = —2 n.mi
azimuth bias error = 3°
elevation bias error = —3°

The results presented in Figs. 3 and 4 are from a single case, i.e., both sets of bias errors were indu
simultaneously. As can be seen from the figures, a reasonably good estimate of the bias errors can
obtained after only three or four scans of the radars. The curve that represents the estimate of -
elevation bias is not as smooth as the other curves. This is due to the value assumed for the variai
in the measurement. The standard deviations assumed for the range, azimuth, and elevation measu
ments were 400 m, 0.5°, and 1.0°, respectively.

4
3 SO ELEVATION ERROR (deg)
E 2 RANGE ERROR (n.mi.)
[ -
5
e !
S
o } 1 1 i }
S 10 20 30 a0 50
g b NUMBER OF SCANS
v
<
© -2§
-3 }_ _ AZIMUTH ERROR (deg)

Fig. 3 — Estimate of induced bias errors in APL radar
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3 \'\./“*~—~ AZIMUTH ERROR (deg)

i 1 1- ]
10 20 . 30 40 50
NUMBER OF SCANS

BIAS ERROR (deg or n.mi.)
o

) RANGE ERROR (n.ml.)

| : )
-3 '{/(\“W‘\——\Mx ELEWATION ERROR (deg)

Fig. 4 — Estimate of induced bias errors in NRL radar

From the preceding results it appears that bias errors can be routinely determined when several
targets are dispersed about a pair of widely separated (35 n.mi) radars. However it must be remem-
bered that this represents an idealized situation in which the targets are stationary and evenly distri-
buted (see Fig. 2). Because of this consideration and the availability of real data, collected by both sites
on targets of opportunity, further testing of the aigorithm was carried out.

4.0 RESULTS WITH REAL DATA

During September 1979, the SPS-39 radars at NRL and APL were used to simultaneously record
detection data on targets of opportunity. Subsequently, these data were processed by APL to identify
tracks and develop track histories from each radar’s detections anc to correlate tracks of common tar-
gets. APL also utilized their tracking algorithm to predict the position of all tracks at the time of north
crossing of the APL radar; i.e., regardless of when detections were made an estimate of the positions of
all targets was made corresponding to the time at which the .*PL radar had most récently swept by true
north. The estimated position of each track at that time was given in rectangular Cartesian coordinates
centered at each site and it was in this form that the data were made avaiiable to NRL. Fortunately the
data in this form were amenable to the algorithm described in Sec. 2.0. All that was required to make
it directly applicable was the transformation of the NRL tracks from the NRL coordinate system to the
APL coordinate system. For each scan of the APL radar each correlated track was examined to sce if
both radars had detected the track since the previous north crossing. If this proved to be true the
difference vector (see Eq. (4)) of the predicted positions was used as the input to the bias removal

2lgorithm. For the data that were used this could mean as many as 15 updates by the Kalman filter in a.

single scan.

The effect of applying the algorithm to a specific track can be seen by examiining Figs. 5 and 6.
Fxgure 5 is a plot of the tracks developed by beth radars for a common target. Theé «facks afe displayed
in the horizontal plane with APL beinig located at the origin and NRL/CBD located approximately 35

n.mi to the soutneast of APL. The target is approachmg APL from the east. The résult of correcting

the t.acks by amounts equal to the éstimated bias errors i$ shown in Fig. 6.- In this case the start of thé

track was coincident with the start-of the bias error estimation process; consequently initial estimates of

the bias errors were applied at the begmnmg of the tracks The estzmated values from both radars that

errors {o correct the tracks may not be representative of a working system A conceptual system would

probably have a fully developed set of bias errors available for correcting the tracks or more likely the

w, 1
'y
[y
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Fig. 6 — Tfack of common target by APL and NRL tadars
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raw data and updated estimates of the errors would be made on a periodic basis. To assess the eﬁ'écts‘
of using a fully developed set of bias errors the track data were processed for 15 min, using the algo-
rithm, and the following set of bias errors was obtained:

on the APL radar 0.224 n.mi in range
2.033° in azimuth

0.119° in elevation

on the NRL ;:adar 0.416 n.mi in range
—0.691° in azimuth

0.505° in elevation.

These errors were applied to the tracks of the target shown in Fig. 5, and the results are shown in Fig.
7. Again the results are quite dramatic, and a significant improvement over Fig. 6 can be seen in the
early stages of the track. Undoubtedly if such information were available to make corrections, it would
simplify the correlation process and greatly reduce the number of false tracks in a multisite sensor
correlation system.

30~
E
g
w20/
<
2
Q
o«
8
zlo‘ SITE 1 (APL)
H i ] ] L] i i |
<10 0 10 40 50 60 70 80
X- COORDINATE (n. mi) f‘*’ _— NRL TRACK
e £ (CORRECTED)
e 7’“‘ e
0r APL TRACK
{CORRECTED)
<ok
/ SITE 2 (NRL)

Fig. 7 — Tracks corrected with fully developed bias errors

To further validate the algorithm it was decided to apply the technique to a target in another qua-
drant, and a target was selected from the southwest quadrant. The target started at a.point approxi— )
mately 40 n.mi west and 60 n.mi south of the APL site. Initially it was headed toward the=
but near the end of its flight it veered toward the APL site. The two tracks of the target are
Fig. 8, and the corrected tracks using the fully developed bias érrofs are plotted in Fig. 9. Tl s}esults
show a significant improvement particularly in the last half of the ﬂnght ‘but are not as dramah as
previous resuits (Fig. 7).

5.0 SUMMARY

An algorithm has hguit developed which can be used to detect and remove bias errors from radar
measurements when the ra;ﬁasuremems are made at two separate and stationary radar sites: The algo:
fithm has demonstrated its ability to detect bias errors and use this information to converge tracks from
independent radars. This was accomplished with both real and simulated data. Sincé bias érrors-in-
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Fig. 8 — Uncorrected tracks of common target
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\ 03
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$
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APL (SITE 1)
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0 60 50 -4 30 <20 10 )
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Fig. 9 — Corrected tracks of common target

radars are the rule rather than the exception, further investigation is essential if multiple platform sen-
sor integration is to be achieved.
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APPENDIX

The position measurement vector, in a local Cartesian coordinate system, can be approximated by
a linearized form as follows:

9x/dr 9x/9n 8x/da] |AR + N,
y| = 3| + |9y/3r dy/om Oy/da] |An + N, (A1)
2 |z| 192/8r 8z/8n ¢2z/8a ] [Aa + N, 1

where

(x5,2)2 is the target position vector with respect to Site 1 as
determined by measurements made at Site 2

xy3) is the mean or true position vector of the target with
respect to Site 1

©x/9r,9y/0m etc.) are the partial derivatives of the components of the
position vector with respect to changes in the measure-
ments made at Site 2

(r.m,a) represent the range, elevation, and azimuth measure-
ments made at Site 2

(AR, An,Aa), represent bias errors in the measurements made at Site
2

(N,,N,,,N,,) represents noise in each of the measurements made at
Site 2.

In vector-matrix notation Eq. (A1) can be expressed as
X, = X+ A,(By + Ny). (A2)

The elements of the A matrix are the partial derivatives of the components of the position vector. The
components of the position vector are with respect to the origin located at Site I, and the partial deriva-
tives are taken with respect to the measuremen.s made at Site 2. The sites are located in a
latitude/longitude system in which Site 1 has the latitude/longitude pair of (65,5 and Site 2 has the
pair (84,)\,). The parameters 85, 84 represent the height of the respective sites above the Géoid.
The Cartesian coordinates of the target with respect to an origin located at Site 1 are given by:

X1 X2
nf =T | *+U (A

23 k4]

11
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The transformation from Site 2 to Site 1 is accomplished with the rotation matrix 7, and the translation
matrix U,. They are defined as follows:

cos A4 — Ap) —sinf, sin W4 — Ap)
T.=|sin8g sin A4 — Ap) sin8, sinfg cos W4 — Ag) + cos 9, cos 9p
—cos g sin Ay —Ag) cosf, sin@z — sinf, cosfz cos (A, ~ Ap)
cos 8, sin (A4 — Ap)
—cos 8, sin@g cos (\ 4 — Ap) + sin 8, cos Oz (Ad)
cosf, cosp cos Ay — Ap) +sinf, sin by

(@ +8,)cos@,sin (A —Arp)
U ,=|-(a+8,) [cos8, sindgz cos A\, — AB) — sin @4 cos: 8] (AS)
(a +8,) [cos@, cos@z cos W\, — Ag) +sin6, sinfgl — (a + &p)
The elements of matrix 4, can now be derived by differentiating Eq. (A3) and recalling that
X3 = r, oS 13 Sin a;,
Y2= r; €OS 7, COS 3, (A6)
Z; = r, sin ;.

They are as follows:

9x,/dry = Ty cos m; sin oy + Ty cos m; cos ay + T3 sinn,

8x)/8m3 = — Ty ry sin m; sin ay — Tyar; sin 3 cos a + Tizr; cos 7,
0x1/8ay = Tyyry cos 3 cos a; — Tyory cos m; sin a;y

8y1/8ry = Ty cos ; sin @y + Ty €0s 13 cos az + T3 sinm,

0y1/0my = —Tyyry sin ny sin ay — Tayry sin 9, €0s ay + Ta3r; €OS 7 (A7)
0y1/8ay = Ty ry cos 13 cos ay — Tyry oS 7, Sin ay

82,/0r; = T3 c08 7, sin ay + T3 cos 9, cos @y + T3 sin 1,

821/87m; =—T31r; sin 93 sin ay — T3yr; sin m3 cos ay + Ti3ry €OS 13

82)/8a; = T3 ry cos n; 08 ay — T3r; cos 7, sin ay,

where T} is an element of the 7, matrix. The elements of the matrix 4, in Eq. (1) are easily derived
from the relationships
X = r; cos 7 sin a;
Y1 = ry €OS 7 €OS a; (A8)
Z1=n sin m
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